
Norwegian University of Science and Technology

Elements of
Complex System Engineering

Antoine B. Rauzy

Department of Mechanical and Production Engineering (MTP)

Norwegian Science and Technology University (NTNU)

and

Chaire Blériot-Fabre

Centrale-Supélec, SAFRAN

Norwegian University of Science and Technology

LECTURE 5.
AUTOMATA

Notions:

• Automata

• Model-Checking

2

Norwegian University of Science and Technology

LECTURE 5. PART 1.
INTRODUCTION

3

Norwegian University of Science and Technology

Objective of this lecture

Automata play a central role in complex systems engineering. They are an
essential modeling tool to describe the behavior of systems. They are also a
fundamental algorithmic tool of software engineering.

The objective of this lecture is:

• to introduce the vocabulary and the main concepts of automata theory;

• to present the various types of automata that are used to describe the
behavior of complex systems;

• to present their use in the context of model-checking;

• to discover a specific application of automata via the design of a
controller.

4

Norwegian University of Science and Technology

Use Case: the Robot*

5

A production workshop is made of two drilling machines, a robot and a storage shelf
(with a limited capacity). Products brought in and taken out of the workshop by means
of two conveyor belts. The robot is in charge of taking items on the first conveyor belt,
moving them to the drilling machine or the storage shelf and to put them on the
second conveyor belt when they are treated.

(*) This case study is freely inspired from a course delivered by Prof. Edward Lin at Maryland University.

We want:
• to program (correctly) the robot;
• to check that the workshop reaches

the expected production level;
• …

This could be done by long, costly (and
potentially dangerous) tries and errors.
But it is of course better to perform
the tests virtually, i.e. to design a
model.

Norwegian University of Science and Technology

What to do?

6

At a high level of abstraction, the behavior of a system can almost always be described
as a set of sequences of actions or events that modify the state of the system, i.e.
eventually by a graph of states and actions.

1
wait for
loading

6
processing

5
wait for

unloading

2
loading

3
wait for

processing

4
unloading

start
loading

end
loading

start
processing

end
processing

start
unloading

end
unloading

Such a graph is called a (finite) state automaton.
It can be more or less detailed depending on the needs.

Norwegian University of Science and Technology

What to do?

7

Once the behavior of each component of the system described by a finite state
automaton, it possible to compose these automata. The composition has to take
into account that some actions are performed locally to a component and that
some other are synchronized, i.e. performed simultaneously on two or more
components.

star loading
machine 1

start loading take item on
conveyor 1

end loading
machine 1

end loading release item

start processing
machine 1

start
processing

…

Norwegian University of Science and Technology

What to do?

8

The global behavior of the system is also a (finite) state automaton. It is the “product”
of local (component) automata via the synchronized actions. For this reason, it is called
a synchronized product.

1,2,2,1

2,1,2,11,1,1,1

1 start loading machine 1

2 end loading machine 1

…

6 start loading machine 2

2,1,2,1
1 2

6

• The states of the synchronized product are vectors of states of compound
automata. Its transitions are vectors of synchronized actions.

• The synchronized product can be extremely large. In practice, it is never built
“by hand”, and even not built at all, but just implicitly traversed.

• This mechanism is recursive: as the synchronized product of automata is itself an
automaton, it is possible to compose it with other automata. This makes it
possible to describe the behavior of hierarchical systems.

Norwegian University of Science and Technology

What to do?

9

Once its global behavior described by an automaton, it is possible to check behavioral
properties of the system. These behavioral properties are translated into graph
properties, i.e. are checked by graph algorithms.

Behavioral properties Graph properties

The production chain will never be
blocked.

There is no state with no out-transition.

The shelf has sufficient capacity. There is no state where the shelf is full
having a out-transition adding an item
to the shelf.

The second drilling machine will be
eventually loaded.

There is no infinite path on which the
second drilling machine is not loaded.

The system can always be go back to its
initial state.

There is a path from any state to the
initial state.

… …

Norwegian University of Science and Technology

LECTURE 5. PART 2.
DEFINITIONS

10

Norwegian University of Science and Technology

Finite State Automata

A finite state automaton is a quadruple S, E, T, i where:

• S is a finite set of symbols called states;

• E is a finite set of symbols called labels; E is called the alphabet of the automaton.

• T is a subset of the Cartesian product SES. Elements of T are called transitions. A

transition (s,e,t) is often denoted: 𝑒: 𝑠 → 𝑡 or 𝑠→
𝑒
𝑡. The states s are called

respectively the source and the target of the transition ;

• i is at state of S called the initial state.

The finite state automaton S, E, T, i is deterministic:

∀ 𝑠, 𝑡, 𝑡′ ∈ 𝑆, ∀𝑒 ∈ 𝐸, 𝑠 →
𝑒
𝑡 ∈ 𝑇 et 𝑠→

𝑒
𝑡′ ∈ 𝑇 ⇒ 𝑡 = 𝑡′

In other word, if each state s and each event e, there is at most one out-transition of s
labelled by e.

Automata that describe system behaviors are not always deterministic.

11

Norwegian University of Science and Technology

Reachable States

The previous definition makes it possible to define automata with states that are not
reachable from the initial state.

The set of reachable states from a state i of a finite state automaton S, E, T, i (and
more generally a graph G(S, T)) is the least fixpoint of the following equation:

𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑖 = 𝑖 ∪ 𝑡; 𝑠 → 𝑡 ∈ 𝑇 ⋀ 𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒(𝑠)

The algorithm we have seen last lecture is derived from the above equation.

In general, we are only interested by the automaton restricted to states that are
reachable from the initial state. Let A: S, E, T, i be a finite state automaton. The
restriction of A to the states that are reachable from A is the automaton A’: S’, E, T’, i
with:

• S′ = 𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒(𝑖)

• T′ = 𝑠→
𝑒
𝑡 ∈ 𝑇; 𝑠, 𝑡 ∈ 𝑆′

This may lead to remove labels that are not used in T’.

12

Norwegian University of Science and Technology

Synchronized Products

Let A1: S1, E1, T1, i1… Ak: Sk, Ek, Tk, ik be k finite state automata and let V be a set of
synchronization vectors, i.e. a subset of the Cartesian product E1  {e}  …  Ek  {e} (the
symbol e represents the absence of transition).

The synchronized product of A1,…, Ak by V is the automaton A: S, E, T, i such that:

• S = 𝑆1 ×⋯× 𝑆𝑘
• 𝐸 = 𝐸1 ∪ 𝜀 ×⋯× 𝐸𝑘 ∪ 𝜖

• 𝑇 = 𝑠→
𝑒
𝑡;

𝑠 = 𝑠1 ×⋯× 𝑠𝑘 ∈ 𝑆

𝑡 = 𝑡1 ×⋯× 𝑡𝑘 ∈ 𝑆

𝑒 = 𝑒1 ×⋯× 𝑒𝑘 ∈ 𝐸

where for each i = 1. . k 𝑠𝑖 →
𝑒𝑖
𝑡𝑖 ∈ 𝑇𝑖 si 𝑒𝑖 ≠ 𝜖

𝑠𝑖 = 𝑡𝑖 si 𝑒𝑖 = 𝜀

• 𝑖 = 𝑖1 ×⋯× 𝑖𝑘

The restriction of the automaton to its reachable states makes indeed fully sense with the
notion of synchronized product: the synchronized product is built by means of a fixpoint
mechanism from its initial state.

13

Norwegian University of Science and Technology

Example : Shared Resources

14

Consider a network with two computers and a printer.
We want to model what can happen in this network.
A first (not very good) model could be:

working

printing

stopPrinting startPrinting

ready

computer 1 computer 2 printer

startPrinting1 startPrinting

startPrinting2 startPrinting

stopPrinting1 stopPrinting

stopPrinting2 stopPrinting

printChunk1 printChunk printChunk

printChunk2 printChunk printChunkprintChunk

printChunk

Norwegian University of Science and Technology

Example: Resource Sharing

15

The synchronized product:

working
working

ready stopPrinting1

startPrinting1

printChunk2

printing
working

ready

working
printing
ready

printing
printing
ready

st
ar

tP
ri

n
ti

n
g2

st
o

p
P

ri
n

ti
n

g2

st
o

p
P

ri
n

ti
n

g2

stopPrinting1

startPrinting1

printChunk1

printChunk1

printChunk2
st

ar
tP

ri
n

ti
n

g2

Norwegian University of Science and Technology

LECTURE 5. PART 3.
INTERLUDE

16

Norwegian University of Science and Technology

Parsing Automata

Automata play a central role in algorithms that read a text (parsing
algorithms).

E.g. an identifier is a letter or an underscore followed by any number of
letters, digits or underscores.

Rational expression: [a-zA-Z_] [a-zA-Z0-9_]*

Automaton:

17

1 2

a-zA-Z_

a-zA-Z0-9_

initial state accepting state

error

any other character

Norwegian University of Science and Technology

Parsing Automata

18

1

e,E

9

+,-

3
0-9

0-9

4

0-9

5

“.” 0-9

0-9

6

8

0-9

0-9

7 0-9

+,-

e,E

e,E

2

“.” “.”

0-9

What does this automaton?

Find “words” recognized by this automaton (at least one per non looped path).

Norwegian University of Science and Technology

The three buckets

19

Automata and synchronized products are hidden in many places, including into famous
puzzles for scholars: Assume we have three buckets that can contain respectively 8, 5
and 3 liters. Assume moreover that the 8 liters one is full at the beginning. Is there a
way to transfer exactly 4 liters from to the 5 liters one, without using any other device
than the three buckets?

8 liters
5 liters

3 liters 3 liters4 liters 4 liters

?

Norwegian University of Science and Technology

Three Buckets Problem: Model

20

The automaton representing a bucket containing n liters is made of n+1 states (0, 1,
2,…, n) and four series of transitions:

Name Source state Target state

get_k (k=1,2,..,n) s n-k s+k

put_k (k=1,2,..,n) s  k s-k

empty_k (k=1,2,..,n) k 0

fill_k (k=1,2,..,n) s = n-k n

Synchronization vectors are then obtained by coupling local transitions “put_k” and
“fill_k” on the one hand, and “get_k” and “empty_k”:

Name S1 (8l) S2 (5l) S3 (3l)

…

PF_3 put_3 fill_3 e

EG_3 empty_3 get_3 e

…

422 152
PF_3

323 053
EG_3

Norwegian University of Science and Technology

Three Buckets Problem: 1st Solution

21

state successors

800 350 503

503 053 800 530

530 350 233 800 503

233 053 503 530 251

251 053 701 233 350

701 251 503 800 710

710 350 413 800 701

413 053 503 710 440

440 350 143 800 413

143 053 503 440 152

152 053 602 143 350

602 152 503 800 620

620 350 323 800 602

323 053 503 620 350

053 503 350

350 053 800 323

800

503

530

233

251

701

710

413

440

P_F3

_GE3

P_F3

_FP2

GE_5

_GE1

P_F3

_GE3

Norwegian University of Science and Technology

Three Buckets Problem: 2nd Solution

22

state successors

800 350 503

503 053 800 530

530 350 233 800 503

233 053 503 530 251

251 053 701 233 350

701 251 503 800 710

710 350 413 800 701

413 053 503 710 440

440 350 143 800 413

143 053 503 440 152

152 053 602 143 350

602 152 503 800 620

620 350 323 800 602

323 053 503 620 350

053 503 350

350 053 800 323

800

350

323

620

602

152

143

440

Norwegian University of Science and Technology

LECTURE 5. PART 4.
PROPERTIES

23

Norwegian University of Science and Technology

Safety Properties

It is possible to write associate Boolean properties with states. For instance:

• A deadlock is a state with no out-transition (sink nodes).

• A dangerous state of the network with several computers and a printer is a
state in which several computers print at the same time.

Safety properties are properties that can be expressed as the reachability of (at
least one state) of a set of states having a certain Boolean property. For instance:

• The existence of a reachable deadlocks.

• The existence of reachable dangerous states.

Safety property play a very important role. First, many expected or unwanted
properties of systems can be expressed as safety properties. Second, they are
relatively easy to check (see lecture on graphs).

It is sometimes possible (not always) to calculate co-reachable states, i.e. states s
such that a given state t (or set of states T) is reachable from s. The calculation of
co-reachable states make it possible to check interesting properties such as the
capacity of the system to come back to its initial state.

24

Norwegian University of Science and Technology

Example of Deadlocks

25

Norwegian University of Science and Technology

Reachable Unsafe States

26

working
working

ready stopPrinting1

startPrinting1

printChunk2

printing
working

ready

working
printing
ready

printing
printing
ready

st
ar

tP
ri

n
ti

n
g2

st
o

p
P

ri
n

ti
n

g2

st
o

p
P

ri
n

ti
n

g2

stopPrinting1

startPrinting1

printChunk1

printChunk1

printChunk2

Synchronized product

There is a reachable state in which both computer 1 and computer 2 are printing.
st

ar
tP

ri
n

ti
n

g2

Norwegian University of Science and Technology

Resource Sharing

27

A slightly more realistic model

computer 1 computer 2 printer

askPrinter1 askPrinter

askPrinter2 askPrinter

startPrinting1 startPrinting startJob

startPrinting2 startPrinting startJob

stopPrinting1 stopPrinting stopJob

stopPrinting2 stopPrinting stopJob

printChunk1 printChunk printChunk

printChunk2 printChunk printChunk

working

printing

stopPrinting

startPrinting

printChunk

standby

printing

stopJob startJob

printChunk

waiting
printer

askPrinter

Norwegian University of Science and Technology

Resource Sharing

28

In this new model, there is no unsafe state

working
working
standby

stopPrinting1

askPrinter1

printChunk2

waiting
working
standby

working
waiting
standby

printing
working
printing

startPrinting1
printChunk1

waiting
waiting
standby

printing
waiting
printing

working
printing
printing

waiting
printing
printing

stopPrinting1

stopPrinting2

stopPrinting2

printChunk2

printChunk1

askPrinter1

askPrinter1

askPrinter2 askPrinter2 askPrinter2

startPrinting2 startPrinting2

startPrinting1

Norwegian University of Science and Technology

Liveness Properties

29

Liveness properties are a second category of interesting properties. A liveness property
asserts that for all reachable state s, all possible executions starting from s will
eventually (i.e. within a finite number of steps) go through a state t verifying a certain
Boolean property P. In other words, there is no circuit going through states that do not
verify the property P. For instance:
• If one of the computer is waiting for the printer, it will eventually get it.
• If an alarm is raised, it will eventually be handled.
• If a client enters into the queue (e.g. of a call center), his demand will be eventually

treated.

Liveness properties play also an important role in model and system
verification/validation.
They are however more costly to check than safety properties. Nevertheless, it exists
relatively efficient data structures and algorithms to do so.

Norwegian University of Science and Technology

Resource Sharing

30

There is an execution in which the second computer waits forever the printer.

working
working
standby

stopPrinting1

askPrinter1

printChunk2

waiting
working
standby

working
waiting
standby

printing
working
printing

startPrinting1
printChunk1

waiting
waiting
standby

printing
waiting
printing

working
printing
printing

waiting
printing
printing

stopPrinting1

stopPrinting2

stopPrinting2

printChunk2

printChunk1

askPrinter1

askPrinter1

askPrinter2 askPrinter2 askPrinter2

startPrinting2 startPrinting2

startPrinting1

Norwegian University of Science and Technology

Fairness

31

This is the reason why liveness properties are often studied under fairness conditions
or assumptions.

An execution involving a set of components is fair if none of these components stays
idle infinitely. Many real life systems are verify liveness properties only if under
fairness assumptions.

The infinite loop detected in the network
assumes that:
• the first computer prints an infinite

document or that it starts immediately
printing a new document after the printing
of current one is completed;

• its requests are systematically given the
highest priority.

These hypotheses may be not very realistic…

Liveness properties are intimately related to time: they are always in the form “in
the future, something expected will necessarily happen”.

Norwegian University of Science and Technology

Beyond Safety and Liveness

There exists properties that are neither safety nor liveness properties.

For instance, given two automata A and B, are these two automata
equivalent, i.e. does any execution of A correspond to an execution of B (i.e. is
labelled with the same actions).

Such a property can be used to check that a system meets its specification.

The general principle to verify such a property is to build (or at least to
traverse) the synchronized product of A and B and to check a safety (or a
liveness) property on the product. Unfortunately, this turns out to be
extremely computationally costly because the product can be astronomically
large.

32

Norwegian University of Science and Technology

Temporal Logics

Temporal logics are often used to describe behavioral properties of the system under
study. Temporal logic formulas characterize sets of executions of the system under
study (i.e. paths in the automaton).

We assume given (implicitly or explicitly) a graph/automaton G : (S, T), T  SS.
Moreover, we assume atomic Boolean properties P = {p1,…, pn} that either true or false
in each state of S. G and P are called a Kripke structure.

The set F of state properties is defined as follows.

• F = true| false | pi | F  F | F  F | F | AF | EF

The formula Af (respectively Ef) characterizes the states s such that all paths
(respectively it exists a path) starting from s that verify the path property f.

The set f of path properties is defined as follows.

• f = F | | F  F | F  F | F | XF | FF | GF | FUF

Xf characterizes the paths starting from a state s whose immediate successor verifies
the state property f.

Ff characterizes the paths starting from a state s whose at least one successors verifies
the state property f.

And so on…

33

Norwegian University of Science and Technology

LECTURE 5. PART 5.
BEYOND STATE AUTOMATA

34

Norwegian University of Science and Technology

Beyond State Automata

Synchronized products describe the behavior of systems in a implicit and
hierarchical way.

There exist actually many formalisms to describe, to specify and to study
behaviors by means of automata. These formalisms can be characterized
along several directions:

• The representation of the state space (explicit or implicit),

• Description of finite or infinite behaviors,

• The means provided for the hierarchical composition,

• Whether the accent is put on states or events

• The graphical representation of models.

It is also possible to associate delays and probabilities to transitions.

Last, it is possible to use automata to generate embedded software
(controller). This technique is now well mastered and more and more applied
in industry.

35

Norwegian University of Science and Technology

State-charts

36

Norwegian University of Science and Technology

Petri Nets

37

Norwegian University of Science and Technology

Moore Machines

38

A Moore machine is made of:
• A finite set of states Q;
• An initial state i, member of Q;
• A finite set of symbols A, called the input

alphabet;
• A finite set of symbols B, called the output

alphabet;
• A transition function d: Q  A  Q;
• An output function : Q B.

Norwegian University of Science and Technology

LECTURE 5. PART 6.
BEYOND STATE AUTOMATA

39

Norwegian University of Science and Technology

Modeling Language(s)

40

Except for toy examples, it is not possible to build the synchronized product by hand
and in many cases not possible to build it at all. Properties are thus in general verified
by exploring the synchronized product without building it (and a fortiori representing
it graphically).
Therefore, we need languages to describe automata and synchronized products and a
tool to verify properties.
A minimal language to do so should contain:
• Constructs to describe automata, i.e. states, events and transitions;
• Constructs to describe synchronized products, i.e. composed automata and

synchronization vectors;
• Constructs to describe models made of automata and synchronization models.

Norwegian University of Science and Technology

A Textual Format for Automata

41

automaton Computer

state working

state waiting

state printing

event askPrinter

event startPrinting

event printChunk

event stopPrinting

transition askPrinter working waiting

transition startPrinting waiting printing

transition printChunk printing printing

transition stopPrinting printing working

end

Automaton ::= “automaton” Identifier State* Event* Transition* “end”
State ::= “state” Identifier
Event ::= “event” Identifier
Transition ::= “transition” Identifier Identifier Identifier

working

printing

stopPrinting

startPrinting

printChunk

waiting
printer

askPrinter

Norwegian University of Science and Technology

A Textual Format for Products

42

product Network

Computer C1

Computer C2

Printer P

event askPrinter1 (C1.askPrinter)

event askPrinter2 (C2.askPrinter)

event startPrinting1 (C1.startPrinting, P.startJob)

event startPrinting2 (C2.startPrinting, P.startJob)

event stopPrinting1 (C1.stopPrinting, P.stopJob)

event stopPrinting2 (C2.stopPrinting, P.stopJob)

event printChunk1 (C1.printChunk, P.printChunk)

event printChunk2 (C2.printChunk, P.printChunk)

end

Product ::= “product” Identifier ComposedAutomaton* SynchronizationVector* “end”
ComposedAutomaton ::= Identifier Identifier
SynchronizationVector ::= “event” Identifier “(“ LocalEvent (“,” LocalEvent)* “)”
LocalEvent ::= Identifier “.” Identifier

Norwegian University of Science and Technology

A Textual Format for Models

43

model PrintingSystem

automaton Computer

…

end

automaton Printer

…

end

product Network

…

end

end

Model ::= “model” Identifier (Automaton | Product)* “end”

Norwegian University of Science and Technology

checky.py

44

The Python program “checky.py” reads a model in a text file and builds the
synchronized product.

As most, if not all, programs designed for this course, it is structured as
follows.
1. Definition of data structures. In this lecture case, classes automata and

products.
2. Classes that makes it possible to read (Reader) and write (Writer) data

structures into text files as well as results of calculations.
3. Classes that implement the calculation(s) of interest (Calculator).
4. Main part of the program where the classes are instanced and the

calculations performed.

You can run the program either in a command shell or using IDLE.

Experiments/myway.py

Norwegian University of Science and Technology

LECTURE 5. PART 6.
WRAP-UP & ASSIGNMENT

45

Norwegian University of Science and Technology

Wrap-Up

• State automata (finite or not) are an essential tool for the behavior
modeling of systems.

• State automata are used in many other contexts, like to parse string of
characters in a broad sense (programs, web pages, DNA…).

• Behavioral properties of systems are checked via state and path
properties of graphs. This technique is called model-checking.

• It is also possible to specify the expected behavior of IT systems
(programs) via state automata. The concrete system can then be
generated directly from the automata.

46

Norwegian University of Science and Technology

Assignment

We consider a production system with two production units working in
parallel. Each production unit alternates between operation and maintenance
phases. Both units are required to be in operation for the system as a whole
to be in operation. The maintenance of units is performed by a maintenance
crew. The maintenance crew can only maintain one unit at a time. Units may
fail while in operation. If a unit is failed and put it maintenance, then it will be
repaired at the end of the maintenance.

1. Describe this production system as a synchronized product.

2. Calculate the synchronized product (by means of the checky.py script).

3. Check whether your system can have unexpected behaviors by describing
and verifying properties of the synchronized product.

47

Norwegian University of Science and Technology

Recommend Readings

Reference book on Automata and Model Checking:

There exists a vast scientific and technical literature on different types automata. E.g.

E.M. Clarke, O. Grumberg , and D.A. Peled. Model Checking. MIT Press , Feb. 2000. ISBN-10: 0262032708, ISBN-
13: 978-0262032704.

David Harel and Michal Polti. Modeling Reactive Systems With Statecharts: The Statemate Approach. McGraw-
Hill Inc.,US (1 août 1998). ISBN-10: 0070262055. ISBN-13: 978-0070262058

Tadao Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE, 77(4):541--580, April
1989.

48

Norwegian University of Science and Technology

Henri Marie Léonce Fabre (1882 -1984)
is a French engineer and pilot. He
invented the seaplane in 1910.
He graduated from Supélec.

Louis Charles Joseph Blériot (1872 -1936)
is an airplane designer and one of the
pioneer pilot of French aviation. He has
been the first to cross the channel on July
the 25th onboard of the Blériot XI.
He graduated from Ecole Centrale de Paris

49

