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LECTURE 5.
AUTOMATA

Notions:

• Automata

• Model-Checking

2



Norwegian University of Science and Technology

LECTURE 5. PART 1.
INTRODUCTION

3



Norwegian University of Science and Technology

Objective of this lecture

Automata play a central role in complex systems engineering. They are an 
essential modeling tool to describe the behavior of systems. They are also a 
fundamental algorithmic tool of software engineering.

The objective of this lecture is:

• to introduce the vocabulary and the main concepts of automata theory;

• to present the various types of automata that are used to describe the 
behavior of complex systems;

• to present their use in the context of model-checking;

• to discover a specific application of automata via the design of a 
controller.
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Use Case: the Robot*
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A production workshop is made of two drilling machines, a robot and a storage shelf 
(with a limited capacity).  Products brought in and taken out of the workshop by means 
of two conveyor belts. The robot is in charge of taking items on the first conveyor belt, 
moving them to the drilling machine or the storage shelf and to put them on the 
second conveyor belt when they are treated.

(*) This case study is freely inspired from a course delivered by Prof. Edward Lin at Maryland University.

We want:
• to program (correctly) the robot;
• to check that the workshop reaches 

the expected production level;
• …

This could be done by long, costly (and 
potentially dangerous) tries and errors. 
But it is of course better to perform 
the tests virtually, i.e. to design a 
model.
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What to do?
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At a high level of abstraction, the behavior of a system can almost always be described 
as a set of sequences of actions or events that modify the state of the system, i.e. 
eventually by a graph of states and actions.

1
wait for 
loading

6
processing

5
wait for

unloading
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loading
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processing
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unloading

start
loading

end
loading
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processing

end
processing

start
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Such a graph is called a (finite) state automaton.
It can be more or less detailed depending on the needs.
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What to do?
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Once the behavior of each component of the system described by a finite state 
automaton, it possible to compose these automata. The composition has to take 
into account that some actions are performed locally to a component and that 
some other are synchronized, i.e. performed simultaneously on two or more 
components.

star loading
machine 1

start loading take item on
conveyor 1

end loading
machine 1

end loading release item

start processing 
machine 1

start
processing

…
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What to do?
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The global behavior of the system is also a (finite) state automaton. It is the “product” 
of local (component) automata via the synchronized actions. For this reason, it is called 
a synchronized product.

1,2,2,1

2,1,2,11,1,1,1

1 start loading machine 1

2 end loading machine 1

…

6 start loading machine 2

2,1,2,1
1 2

6

• The states of the synchronized product are vectors of states of compound 
automata. Its transitions are vectors of synchronized actions.

• The synchronized product can be extremely large. In practice, it is never built 
“by hand”, and even not built at all, but just implicitly traversed.

• This mechanism is recursive: as the synchronized product of automata is itself an 
automaton, it is possible to compose it with other automata. This makes it 
possible to describe the behavior of hierarchical systems.
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What to do?
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Once its global behavior described by an automaton, it is possible to check behavioral 
properties of the system. These behavioral properties are translated into graph 
properties, i.e. are checked by graph algorithms.

Behavioral properties Graph properties

The production chain will never be 
blocked.

There is no state with no out-transition.

The shelf has sufficient capacity. There is no state where the shelf is full 
having a out-transition adding an item 
to the shelf.

The second drilling machine will be 
eventually loaded.

There is no infinite path on which the 
second drilling machine is not loaded.

The system can always be go back to its 
initial state.

There is a path from any state to the 
initial state.

… …
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LECTURE 5. PART 2.
DEFINITIONS
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Finite State Automata

A finite state automaton is a quadruple S, E, T, i where:

• S is a finite set of symbols called states;

• E is a finite set of symbols called labels; E is called the alphabet of the automaton.

• T is a subset of the Cartesian product SES. Elements of T are called transitions. A 

transition (s,e,t) is often denoted: 𝑒: 𝑠 → 𝑡 or 𝑠→
𝑒
𝑡. The states s are called 

respectively the source and the target of the transition ;

• i is at state of S called the initial state.

The finite state automaton S, E, T, i is deterministic:

∀ 𝑠, 𝑡, 𝑡′ ∈ 𝑆, ∀𝑒 ∈ 𝐸, 𝑠 →
𝑒
𝑡 ∈ 𝑇 et 𝑠→

𝑒
𝑡′ ∈ 𝑇 ⇒ 𝑡 = 𝑡′

In other word, if each state s and each event e, there is at most one out-transition of s 
labelled by e.

Automata that describe system behaviors are not always deterministic.

11
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Reachable States

The previous definition makes it possible to define automata with states that are not 
reachable from the initial state.

The set of reachable states from a state i of a finite state automaton S, E, T, i (and 
more generally a graph G(S, T)) is the least fixpoint of the following equation:

𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑖 = 𝑖 ∪ 𝑡; 𝑠 → 𝑡 ∈ 𝑇 ⋀ 𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒(𝑠)

The algorithm we have seen last lecture is derived from the above equation.

In general, we are only interested by the automaton restricted to states that are 
reachable from the initial state. Let A: S, E, T, i be a finite state automaton. The 
restriction of A to the states that are reachable from A is the automaton A’: S’, E, T’, i
with:

• S′ = 𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒(𝑖)

• T′ = 𝑠→
𝑒
𝑡 ∈ 𝑇; 𝑠, 𝑡 ∈ 𝑆′

This may lead to remove labels that are not used in T’.

12
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Synchronized Products

Let A1: S1, E1, T1, i1… Ak: Sk, Ek, Tk, ik be k finite state automata and let V be a set of 
synchronization vectors, i.e. a subset of the Cartesian product E1  {e}  …  Ek  {e} (the 
symbol e represents the absence of transition).

The synchronized product of  A1,…, Ak by V is the automaton A: S, E, T, i such that:

• S = 𝑆1 ×⋯× 𝑆𝑘
• 𝐸 = 𝐸1 ∪ 𝜀 ×⋯× 𝐸𝑘 ∪ 𝜖

• 𝑇 = 𝑠→
𝑒
𝑡;

𝑠 = 𝑠1 ×⋯× 𝑠𝑘 ∈ 𝑆

𝑡 = 𝑡1 ×⋯× 𝑡𝑘 ∈ 𝑆

𝑒 = 𝑒1 ×⋯× 𝑒𝑘 ∈ 𝐸

where for each i = 1. . k 𝑠𝑖 →
𝑒𝑖
𝑡𝑖 ∈ 𝑇𝑖 si 𝑒𝑖 ≠ 𝜖

𝑠𝑖 = 𝑡𝑖 si 𝑒𝑖 = 𝜀

• 𝑖 = 𝑖1 ×⋯× 𝑖𝑘

The restriction of the automaton to its reachable states makes indeed fully sense with the 
notion of synchronized product: the synchronized product is built by means of a fixpoint
mechanism from its initial state.
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Example : Shared Resources
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Consider a network with two computers and a printer.
We want to model what can happen in this network.
A first (not very good) model could be:

working

printing

stopPrinting startPrinting

ready

computer 1 computer 2 printer

startPrinting1 startPrinting

startPrinting2 startPrinting

stopPrinting1 stopPrinting

stopPrinting2 stopPrinting

printChunk1 printChunk printChunk

printChunk2 printChunk printChunkprintChunk

printChunk
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Example: Resource Sharing
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The synchronized product:
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printing
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LECTURE 5. PART 3.
INTERLUDE
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Parsing Automata

Automata play a central role in algorithms that read a text (parsing 
algorithms).

E.g. an identifier is a letter or an underscore followed by any number of 
letters, digits or underscores.

Rational expression: [a-zA-Z_] [a-zA-Z0-9_]*

Automaton:

17

1 2

a-zA-Z_

a-zA-Z0-9_

initial state accepting state

error

any other character
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Parsing Automata
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1

e,E

9

+,-

3
0-9

0-9

4

0-9

5

“.” 0-9

0-9

6

8

0-9

0-9

7 0-9

+,-

e,E

e,E

2

“.” “.”

0-9

What does this automaton?

Find “words” recognized by this automaton (at least one per non looped path).
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The three buckets
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Automata and synchronized products are hidden in many places, including into famous 
puzzles for scholars: Assume we have three buckets that can contain respectively 8, 5 
and 3 liters. Assume moreover that the 8 liters one is full at the beginning. Is there a 
way to transfer exactly 4 liters from to the 5 liters one, without using any other device 
than the three buckets?

8 liters
5 liters

3 liters 3 liters4 liters 4 liters

?
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Three Buckets Problem: Model
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The automaton representing a bucket containing n liters is made of n+1 states (0, 1, 
2,…, n) and four series of transitions:

Name Source state Target state

get_k (k=1,2,..,n) s n-k s+k

put_k (k=1,2,..,n) s  k s-k

empty_k (k=1,2,..,n) k 0

fill_k (k=1,2,..,n) s = n-k n

Synchronization vectors are then obtained by coupling local transitions “put_k” and 
“fill_k” on the one hand, and “get_k” and “empty_k”:

Name S1 (8l) S2 (5l) S3 (3l)

…

PF_3 put_3 fill_3 e

EG_3 empty_3 get_3 e

…

422 152
PF_3

323 053
EG_3
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Three Buckets Problem: 1st Solution
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state successors

800 350 503

503 053 800 530

530 350 233 800 503

233 053 503 530 251

251 053 701 233 350

701 251 503 800 710

710 350 413 800 701

413 053 503 710 440

440 350 143 800 413

143 053 503 440 152

152 053 602 143 350

602 152 503 800 620

620 350 323 800 602

323 053 503 620 350

053 503 350

350 053 800 323

800

503

530

233

251

701

710

413

440

P_F3

_GE3

P_F3

_FP2

GE_5

_GE1

P_F3

_GE3
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Three Buckets Problem: 2nd Solution
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state successors

800 350 503

503 053 800 530

530 350 233 800 503

233 053 503 530 251

251 053 701 233 350

701 251 503 800 710

710 350 413 800 701

413 053 503 710 440

440 350 143 800 413

143 053 503 440 152

152 053 602 143 350

602 152 503 800 620

620 350 323 800 602

323 053 503 620 350

053 503 350

350 053 800 323

800

350

323

620

602

152

143

440
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LECTURE 5. PART 4.
PROPERTIES
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Safety Properties

It is possible to write associate Boolean properties with states. For instance:

• A deadlock is a state with no out-transition (sink nodes).

• A dangerous state of the network with several computers and a printer is a 
state in which several computers print at the same time.

Safety properties are properties that can be expressed as the reachability of (at 
least one state) of  a set of states having a certain Boolean property. For instance:

• The existence of a reachable deadlocks.

• The existence of reachable dangerous states.

Safety property play a very important role. First, many expected or unwanted 
properties of systems can be expressed as safety properties. Second, they are 
relatively easy to check (see lecture on graphs).

It is sometimes possible (not always) to calculate co-reachable states, i.e. states s 
such that a given state t (or set of states T) is reachable from s. The calculation of 
co-reachable states make it possible to check interesting properties such as the 
capacity of the system to come back to its initial state.

24
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Example of Deadlocks
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Reachable Unsafe States

26

working
working

ready stopPrinting1

startPrinting1

printChunk2

printing
working

ready

working
printing
ready

printing
printing
ready
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stopPrinting1

startPrinting1

printChunk1

printChunk1

printChunk2

Synchronized product

There is a reachable state in which both computer 1 and computer 2 are printing.
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Resource Sharing
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A slightly more realistic model

computer 1 computer 2 printer

askPrinter1 askPrinter

askPrinter2 askPrinter

startPrinting1 startPrinting startJob

startPrinting2 startPrinting startJob

stopPrinting1 stopPrinting stopJob

stopPrinting2 stopPrinting stopJob

printChunk1 printChunk printChunk

printChunk2 printChunk printChunk

working

printing

stopPrinting

startPrinting

printChunk

standby

printing

stopJob startJob

printChunk

waiting
printer

askPrinter
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Resource Sharing
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In this new model, there is no unsafe state

working
working
standby

stopPrinting1

askPrinter1

printChunk2

waiting
working
standby

working
waiting
standby

printing
working
printing

startPrinting1
printChunk1

waiting
waiting
standby

printing
waiting
printing

working
printing
printing

waiting
printing
printing

stopPrinting1

stopPrinting2

stopPrinting2

printChunk2

printChunk1

askPrinter1

askPrinter1

askPrinter2 askPrinter2 askPrinter2

startPrinting2 startPrinting2

startPrinting1
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Liveness Properties
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Liveness properties are a second category of interesting properties. A liveness property 
asserts that for all reachable state s, all possible executions starting from s will 
eventually (i.e. within a finite number of steps) go through a state t verifying a certain 
Boolean property P. In other words, there is no circuit going through states that do not 
verify the property P. For instance:
• If one of the computer is waiting for the printer, it will eventually get it.
• If an alarm is raised, it will eventually be handled.
• If a client enters into the queue (e.g. of a call center), his demand will be eventually 

treated.

Liveness properties play also an important role in model and system 
verification/validation.
They are however more costly to check than safety properties. Nevertheless, it exists 
relatively efficient data structures and algorithms to do so.
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Resource Sharing
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There is an execution in which the second computer waits forever the printer.

working
working
standby

stopPrinting1

askPrinter1

printChunk2

waiting
working
standby

working
waiting
standby

printing
working
printing

startPrinting1
printChunk1

waiting
waiting
standby

printing
waiting
printing

working
printing
printing

waiting
printing
printing

stopPrinting1

stopPrinting2

stopPrinting2

printChunk2

printChunk1

askPrinter1

askPrinter1

askPrinter2 askPrinter2 askPrinter2

startPrinting2 startPrinting2

startPrinting1
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Fairness
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This is the reason why liveness properties are often studied under fairness conditions 
or assumptions.

An execution involving a set of components is fair if none of these components stays 
idle infinitely. Many real life systems are verify liveness properties only if under 
fairness assumptions.

The infinite loop detected in the network 
assumes that:
• the first computer prints an infinite 

document or that it starts immediately 
printing a new document after the printing 
of current one is completed;

• its requests are systematically given the 
highest priority.

These hypotheses may be not very realistic…

Liveness properties are intimately related to time: they are always in the form “in 
the future, something expected will necessarily happen”.



Norwegian University of Science and Technology

Beyond Safety and Liveness

There exists properties that are neither safety nor liveness properties.

For instance, given two automata A and B, are these two automata 
equivalent, i.e. does any execution of A correspond to an execution of B (i.e. is 
labelled with the same actions).

Such a property can be used to check that a system meets its specification.

The general principle to verify such a property is to build (or at least to 
traverse) the synchronized product of A and B and to check a safety (or a 
liveness) property on the product. Unfortunately, this turns out to be 
extremely computationally costly because the product can be astronomically 
large.

32
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Temporal Logics

Temporal logics are often used to describe behavioral properties of the system under 
study. Temporal logic formulas characterize sets of executions of the system under 
study (i.e. paths in the automaton).

We assume given (implicitly or explicitly)  a graph/automaton G : (S, T), T  SS. 
Moreover, we assume atomic Boolean properties P = {p1,…, pn} that either true or false 
in each state of S. G and P are called a Kripke structure.

The set F of state properties is defined as follows.

• F = true| false | pi | F  F | F  F |  F | AF | EF

The formula Af (respectively Ef) characterizes the states s such that all paths 
(respectively it exists a path) starting from s that verify the path property f.

The set f of path properties is defined as follows.

• f = F | | F  F | F  F |  F | XF | FF | GF | FUF

Xf characterizes the paths starting from a state s whose immediate successor verifies 
the state property f.

Ff characterizes the paths starting from a state s whose at least one successors verifies 
the state property f.

And so on…
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LECTURE 5. PART 5.
BEYOND STATE AUTOMATA
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Beyond State Automata

Synchronized products describe the behavior of systems in a implicit and 
hierarchical way.

There exist actually many formalisms to describe, to specify and to study 
behaviors by means of automata. These formalisms can be characterized 
along several directions:

• The representation of the state space (explicit or implicit),

• Description of finite or infinite behaviors,

• The means provided for the hierarchical composition,

• Whether the accent is put on states or events

• The graphical representation of models.

It is also possible to associate delays and probabilities to transitions.

Last, it is possible to use automata to generate embedded software 
(controller). This technique is now well mastered and more and more applied 
in industry.
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State-charts
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Petri Nets
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Moore Machines
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A Moore machine is made of:
• A finite set of states Q;
• An initial state i, member of Q;
• A finite set of symbols A, called the input 

alphabet;
• A finite set of symbols B, called the output 

alphabet;
• A transition function d: Q  A  Q;
• An output function  : Q B.
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LECTURE 5. PART 6.
BEYOND STATE AUTOMATA
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Modeling Language(s)
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Except for toy examples, it is not possible to build the synchronized product by hand 
and in many cases not possible to build it at all. Properties are thus in general verified 
by exploring the synchronized product without building it (and a fortiori representing 
it graphically).
Therefore, we need languages to describe automata and synchronized products and a 
tool to verify properties.
A minimal language to do so should contain:
• Constructs to describe automata, i.e. states, events and transitions;
• Constructs to describe synchronized products, i.e. composed automata and 

synchronization vectors;
• Constructs to describe models made of automata and synchronization models.
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A Textual Format for Automata

41

automaton Computer

state working

state waiting

state printing

event askPrinter

event startPrinting

event printChunk

event stopPrinting

transition askPrinter working waiting

transition startPrinting waiting printing

transition printChunk printing printing

transition stopPrinting printing working

end

Automaton ::= “automaton” Identifier State* Event* Transition* “end”
State ::= “state” Identifier
Event ::= “event” Identifier
Transition ::= “transition” Identifier Identifier Identifier

working

printing

stopPrinting

startPrinting

printChunk

waiting
printer

askPrinter
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A Textual Format for Products
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product Network

Computer C1

Computer C2

Printer P

event askPrinter1 (C1.askPrinter)

event askPrinter2 (C2.askPrinter)

event startPrinting1 (C1.startPrinting, P.startJob)

event startPrinting2 (C2.startPrinting, P.startJob)

event stopPrinting1 (C1.stopPrinting, P.stopJob)

event stopPrinting2 (C2.stopPrinting, P.stopJob)

event printChunk1 (C1.printChunk, P.printChunk)

event printChunk2 (C2.printChunk, P.printChunk)

end

Product ::= “product” Identifier ComposedAutomaton* SynchronizationVector* “end”
ComposedAutomaton ::= Identifier Identifier
SynchronizationVector ::= “event” Identifier “(“ LocalEvent (“,” LocalEvent)* “)”
LocalEvent ::= Identifier “.” Identifier
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A Textual Format for Models
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model PrintingSystem

automaton Computer

…

end

automaton Printer

…

end

product Network

…

end

end

Model ::= “model” Identifier (Automaton | Product)* “end”
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checky.py

44

The Python program “checky.py” reads a model in a text file and builds the 
synchronized product.

As most, if not all, programs designed for this course, it is structured as 
follows.
1. Definition of data structures. In this lecture case, classes automata and 

products.
2. Classes that makes it possible to read (Reader) and write (Writer) data 

structures into text files as well as results of calculations.
3. Classes that implement the calculation(s) of interest (Calculator).
4. Main part of the program where the classes are instanced and the 

calculations performed.

You can run the program either in a command shell or using IDLE.

Experiments/myway.py
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LECTURE 5. PART 6.
WRAP-UP & ASSIGNMENT
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Wrap-Up

• State automata (finite or not) are an essential tool for the behavior 
modeling of systems.

• State automata are used in many other contexts, like to parse string of 
characters in a broad sense (programs, web pages, DNA…).

• Behavioral properties of systems are checked via state and path 
properties of graphs. This technique is called model-checking.

• It is also possible to specify the expected behavior of IT systems 
(programs) via state automata. The concrete system can then be 
generated directly from the automata.

46



Norwegian University of Science and Technology

Assignment

We consider a production system with two production units working in 
parallel. Each production unit alternates between operation and maintenance 
phases. Both units are required to be in operation for the system as a whole 
to be in operation. The maintenance of units is performed by a maintenance 
crew. The maintenance crew can only maintain one unit at a time. Units may 
fail while in operation. If a unit is failed and put it maintenance, then it will be 
repaired at the end of the maintenance.

1. Describe this production system as a synchronized product.

2. Calculate the synchronized product (by means of the checky.py script).

3. Check whether your system can have unexpected behaviors by describing 
and verifying properties of the synchronized product.
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Recommend Readings

Reference book on Automata and Model Checking:

There exists a vast scientific and technical literature on different types automata. E.g.

E.M. Clarke, O. Grumberg , and D.A. Peled. Model Checking. MIT Press , Feb. 2000. ISBN-10: 0262032708, ISBN-
13: 978-0262032704.

David Harel and Michal Polti. Modeling Reactive Systems With Statecharts: The Statemate Approach. McGraw-
Hill Inc.,US (1 août 1998). ISBN-10: 0070262055. ISBN-13: 978-0070262058

Tadao Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE, 77(4):541--580, April 
1989.
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Henri Marie Léonce Fabre (1882 -1984) 
is a French engineer and pilot. He 
invented the seaplane in 1910.
He graduated from Supélec.

Louis Charles Joseph Blériot (1872 -1936) 
is an airplane designer and one of the 
pioneer pilot of French aviation. He has 
been the first to cross the channel on July 
the 25th onboard of the Blériot XI.
He graduated from Ecole Centrale de Paris
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