
Norwegian University of Science and Technology

Elements of
Complex System Engineering

Antoine B. Rauzy

Department of Mechanical and Production Engineering (MTP)

Norwegian Science and Technology University (NTNU)

and

Chaire Blériot-Fabre

Centrale-Supélec, SAFRAN

Norwegian University of Science and Technology

LECTURE 7.
DISCRETE EVENT SIMULATION

Notions:

• Discrete Event Systems

• Simulation Algorithms

2

Norwegian University of Science and Technology

LECTURE 7. PART 1.
INTRODUCTION

3

Norwegian University of Science and Technology

Objective of this lecture

This lecture provides an introduction to job-shop scheduling problems. More
importantly, it introduces the notion of Discrete Event Systems, and presents
the principles of Discrete Event Simulation.

When considered from a sufficiently high abstraction level, many industrial
systems can be described as discrete event systems. Discrete event simulation
provides then an extremely powerful mean to analyze the system under
study. Discrete event simulation is thus a fundamental tool of the toolbox of
the system engineer.

4

Norwegian University of Science and Technology

Case Study: Wafer Production Shop*

5

(*) This use case is inspired from:
Youngshin Park, Sooyoung Kim and Chi-Hyuck Jun. Performance analysis of re-entrant flow shop with single job
and batch machines using mean value analysis. Production Planning and Control. Vol. 11, Num. 6. pp. 537-546.
2000.

Wikipedia: “A wafer, also called a slice or substrate, is a thin slice of semiconductor
material, such as a crystalline silicon, used in electronics for the fabrication of integrated
circuits and in photovoltaics for conventional, wafer-based solar cells. The wafer serves as
the substrate for microelectronic devices built in and over the wafer and undergoes many
microfabrication process steps such as doping or ion implantation, etching, deposition of
various materials, and photolithographic patterning. Finally the individual microcircuits
are separated (dicing) and packaged.”

“Silicon wafers are available in a variety of diameters from
25.4 mm (1 inch) to 300 mm (11.8 inches).
Semiconductor fabrication plants are defined by the
diameter of wafers that they are tooled to produce. The
diameter has gradually increased to improve throughout
and reduce cost with the current state-of-the-art fab
using 300 mm.”

Norwegian University of Science and Technology

Case Study: Wafer Production Shop (2)

6

Wafers are produced by batches of 20 to 50 wafers. To ensure the traceability of the
process, batches are never split up.
The production consists in a series of tasks. Each task is performed by a machine. The
same machine is used for several tasks (re-entrant flow), but it performs only one task at
a time (of a batch of wafers).

Each machine has several buffers, one
per task, in which it stores the batches
waiting for a treatment. Each buffer
corresponds to a task. Once a task
performed on a batch, the batch is
immediately discharged from the
machine and loaded in the buffer of the
next task.

The duration of a task depends only on the time to perform the task on a single wafer
and the time to load and unload a batch.

Norwegian University of Science and Technology

Case Study: Wafer Production Shop (3)

7

Example:

Task 1 2 3 4 5 6 7 8 9

Duration per wafer 0.5 3.5 1.2 3 0.8 0.5 1 1.9 0.3

Load/unload time 2 2 2 2 2 2 2 2 2

task 1 task 2

task 3

task 4

task 5task 6

task 7 task 8

task 9

machine 1 machine 2 machine 3

buffer

No.39 Xueyuan Road, Haidian District, Beijing 100191

Norwegian University of Science and Technology

Case Study: Wafer Production Shop (4)

Machines (and their operation) are extremely costly. Therefore, it is of
primary importance to optimize the production, i.e. to produce as many
wafers as possible over a given time period. Concretely, this means tuning
several parameters:

• The size of the batches of wafers (batches can be of different sizes);

• The sizes of the buffers;

• The policy of each machine (which waiting batch to treat first).

8

Norwegian University of Science and Technology

What to Do?

It is of course possible to try to give a mathematical formalization to the
problem so to get a (constraint) optimization problem, and then to try to
solve this problem with some algorithm or meta-heuristics. In real life
however, the fabrication process consists of about 60 different tasks
performed on a dozen of machines.

The state space to explore is just gigantic and there will be probably no means
to face this combinatorial explosion.

To analyze the problem a good practical method consists in creating a
discrete event model that makes it possible to simulate the behavior of the
shop. In this way, virtual experiments can be performed at a relatively low
cost. The optimization can be partly computerized and partly done by hand,
by means of a tries-and-errors approach.

This is the purpose of discrete event simulation.

9

Norwegian University of Science and Technology

LECTURE 7. PART 2.
DISCRETE EVENT SYSTEMS

10

Norwegian University of Science and Technology

Finite State Automata (reminder)

A finite state automaton is a quadruple S, E, T, i where:

• S is a finite set of symbols called states;

• E is a finite set of symbols called labels; E is called the alphabet of the automaton.

• T is a subset of the Cartesian product SES. Elements of T are called transitions. A

transition (s,e,t) is often denoted: 𝑒: 𝑠 → 𝑡 or 𝑠→
𝑒
𝑡. The states s are called

respectively the source and the target of the transition ;

• i is at state of S called the initial state.

The finite state automaton S, E, T, i is deterministic:

∀ 𝑠, 𝑡, 𝑡′ ∈ 𝑆, ∀𝑒 ∈ 𝐸, 𝑠 →
𝑒
𝑡 ∈ 𝑇 et 𝑠→

𝑒
𝑡′ ∈ 𝑇 ⇒ 𝑡 = 𝑡′

In other word, if each state s and each event e, there is at most one out-transition of s
labelled by e.

Automata that describe system behaviors are not always deterministic.

11

Norwegian University of Science and Technology

Synchronized Products (reminder)

Let A1: S1, E1, T1, i1… Ak: Sk, Ek, Tk, ik be k finite state automata and let V be a set of
synchronization vectors, i.e. a subset of the Cartesian product E1  {e}  …  Ek  {e} (the
symbol e represents the absence of transition).

The synchronized product of A1,…, Ak by V is the automaton A: S, E, T, i such that:

• S = 𝑆1 ×⋯× 𝑆𝑘
• 𝐸 = 𝐸1 ∪ 𝜀 ×⋯× 𝐸𝑘 ∪ 𝜖

• 𝑇 = 𝑠→
𝑒
𝑡;

𝑠 = 𝑠1 ×⋯× 𝑠𝑘 ∈ 𝑆

𝑡 = 𝑡1 ×⋯× 𝑡𝑘 ∈ 𝑆

𝑒 = 𝑒1 ×⋯× 𝑒𝑘 ∈ 𝐸

where for each i = 1. . k 𝑠𝑖 →
𝑒𝑖
𝑡𝑖 ∈ 𝑇𝑖 si 𝑒𝑖 ≠ 𝜖

𝑠𝑖 = 𝑡𝑖 si 𝑒𝑖 = 𝜀

• 𝑖 = 𝑖1 ×⋯× 𝑖𝑘

The restriction of the automaton to its reachable states makes indeed fully sense with the
notion of synchronized product: the synchronized product is built by means of a fixpoint
mechanism from its initial state.

12

Norwegian University of Science and Technology

Discrete Event Systems

A Discrete Event System (DES) is 4-tuple V, E, T, i where :

• V is a set of variables describing the state of the system. In general, variables of V
take their values into finite domains;

• E is a set of events;

• T is a set of transitions. A transition is a triple G, e, A, denoted as e: G A,
where:

– G is a Boolean function over V, i.e. a mechanism that given a value of the
variables returns true or false. G is called the guard of the transition.

– e is an event of E.

– A is a function from V to V, i.e. a mechanism that given a value of variables
returns a new value for these variables. A is called the action of the transition.

• i is the initial assignment of variables.

A transition e: G A is fireable in the state s, i.e. for the variable assignment s, if
G(s) = true.

Norwegian University of Science and Technology

Example: a Simple Buffer

14

• V = { numberOfItems }, dom(numberOfItems) = [0, 6]
• E = { pushItem, popItem }
• T = {

pushItem: numberOfItems<6  numberOfItems := numberOfItems+1
popItem: numberOfItems>0  numberOfItems := numberOfItems-1
}

• i = [numberOfItems = 0]

31 2 40 5 6

pushItem pushItem pushItem pushItem pushItem pushItem

popItem popItem popItem popItem popItem popItem

The above discrete event system describes implicitly the following finite state
automaton.

Norwegian University of Science and Technology

Example: a 10 wafers Batch

15

• V = { numberOfWafers, status}
dom(numberOfWafers) = {10}
dom(status) = { BUFFER1, TASK1, BUFFER2, TASK2, BUFFER3 }

• E = { upload1, download1, upload2, download2 }
• T = {

upload1: status= BUFFER1  status := TASK1
download1 : status= TASK1  status := BUFFER2
upload2: status= BUFFER2  status := TASK2
download2 : status= TASK2  status := BUFFER3

}
• i = [numberOfWafers = 10, status = BUFFER1]

10
BUFFER1

10
TASK1

10
TASK2

10
BUFFER2

10
BUFFER3

upload1 upload2

download1 download2

Norwegian University of Science and Technology

Example: a Queue

16

2

2

5 5

5

6

5

6

7

6

7

upload[2] upload[5] download[2]

upload[6]

upload[7]download[5]

Norwegian University of Science and Technology

Example: a Queue

17

• parameters: size, numberOfItems
• V = {top} U { level[i] ; i  [0, size-1] }

dom(top) = [0, size-1]
dom(level[i]) = [0, numberOfItems]

• E = { upload[i], download[i]; i  [1, numberOfItems] }
• T = {

upload[i]: top<size 
for l=top downto 1: level[l] := level[l-1]
level[0] := i
top := top+1

download[i]: top>0 and level[top-1]=i 
level[top-1] = 0
top := top-1

for i=1,… numberOfItems
}

• i = [top= 0, for l=0 to size-1: level[l]:=0]

0

0

2

size

itemIndex  [0, numberOfItems]
(0 if the cell is empty)

Norwegian University of Science and Technology

Composition

Let A: VA, EA, TA, iA and B: VB, EB, TB, iB be two discrete event systems built
on distinct sets of variables and events.

The composition (or product) of A and B, denoted A  B, is the discrete event
system V, E, T, i defined as follows.

• V = VA  VB

• E = EA  EB

• T = TA  TB

• i = iA o iB

To avoid collisions in the name of variables and events, it is convenient to
prefix all of the variables and events of A by “A.” and all of the variables and
events of B by “B.”.

The product defined above is commutative and associative. Therefore it can
be extended to any number of discrete event systems.

18

Norwegian University of Science and Technology

Synchronization and Hiding

Event synchronization is possible (and useful). It is an internal operation. It
consists in defining a transition as the synchronization of two or more
transitions.

Let V, E, T, i be a DES, let e1: G1  A1 and e2: G2  A2 be two transitions of T
and finally let e be an event of e. We can introduce the new transition e: e1 &
e2 defined as follows.

e: G1 and G2  A1 o A2;

The synchronization of two events is associative, it can be thus extended to
any number of events.

Hiding is sometimes convenient when building discrete event systems by
composing smaller ones. It consists is forbidding a event to occur individually
(but this event may have been synchronized before).

19

Norwegian University of Science and Technology

Network (reminder)

20

A slightly more realistic model

computer 1 computer 2 printer

askPrinter1 askPrinter

askPrinter2 askPrinter

startPrinting1 startPrinting startJob

startPrinting2 startPrinting startJob

stopPrinting1 stopPrinting stopJob

stopPrinting2 stopPrinting stopJob

printChunk1 printChunk printChunk

printChunk2 printChunk printChunk

standby

printing

stopJob startJob

printChunk

working

printing

stopPrinting

startPrinting

printChunk

waiting
printer

askPrinter

Norwegian University of Science and Technology 21

Computer:
• V = { state }

dom(state) = { WORKING, WAITING, PRINTING}
• E = { askPrinter, startPrinting, printChunck, stopPrinting }
• T = {

askPrinter: state=WORKING  state := WAITING
startPrinting: state=WAITING  state := PRINTING
printChunck: state=PRINTING  state := PRINTING
stopPrinting: state= PRINTING  state := WORKING
}

• i = [state=WORKING]

working

printing

stopPrinting

startPrinting

printChunk

waiting
printer

askPrinter

DES for Computers

Norwegian University of Science and Technology 22

Printer:
• V = { state }

dom(state) = { STANDBY, PRINTING}
• E = {startJob, printChunck, stopJob }
• T = {

startJob: state=STANDBY  state := PRINTING
printChunck: state=PRINTING  state := PRINTING
stopJob: state= PRINTING  state := STANDBY
}

• i = [state=STANDBY]

standby

printing

stopJob startJob

printChunk

DES for Printers

Norwegian University of Science and Technology

DES for the Network

23

Network:
• V = { C1.state, C2.state, P.state }

dom(C1.state) = dom(C2.state) = { WORKING, WAITING, PRINTING}
dom(P.state) = { STANDBY, PRINTING}

• E = { askPrinter1, startPrinting1, printChunck1, stopPrinting1,
askPrinter2, startPrinting2, printChunck2, stopPrinting2 }

• T = {
askPrinter1: C1.state=WORKING  C1.state := WAITING
startPrinting1: C1.state=WAITING and P.state=STANDBY 

C1.state := PRINTING, P.state := PRINTING

…
stopPrinting2: C2.state= PRINTING and P.state=STANDBY 

C2.state := WORKING, P.state := STANDBY
}

• i = [C1.state=WORKING, C2.state=WORKING, P.state=STANDBY]

Norwegian University of Science and Technology

Synchronization & Hiding

24

Synchronization:

C1.startPrinting: C1.state=WAITING  C1.state := PRINTING
&
P.startPrinting: P.state=STANDBY  P.state := PRINTING
=
startPrinting1: C1.state=WAITING and P.state=STANDBY 

C1.state := PRINTING, P.state := PRINTING

Hiding:

C1.startPrinting and P.startPrinting cease to exist individually

Norwegian University of Science and Technology

Reachability Graph

The reachability graph of a discrete event system V, E, T, i is a Kripke
structure ,  built as follows.

• The initial assignment i belongs to .

• If a variable assignment s belongs to , and there is a transition e: G A
of T such that G(s) = true, then:

– t = A(s) belongs to ;

– e: s  t belongs to T.

The DES V, E, T, i is therefore an implicit representation of the Kripke
structure , .

For most of the industrial size models, the Kripke structure cannot be built
because it is much too big.

Norwegian University of Science and Technology

Reachability Graph of the Network

26

working
working
standby

stopPrinting1

askPrinter1

printChunk2

waiting
working
standby

working
waiting
standby

printing
working
printing

startPrinting1
printChunk1

waiting
waiting
standby

printing
waiting
printing

working
printing
printing

waiting
printing
printing

stopPrinting1

stopPrinting2

stopPrinting2

printChunk2

printChunk1

askPrinter1

askPrinter1

askPrinter2 askPrinter2 askPrinter2

startPrinting2 startPrinting2

startPrinting1

Norwegian University of Science and Technology

Runs

An alternative way of defining the semantics of discrete event systems
consists in using the notion of run.

Let M: V, E, T, i be a discrete event system. A run of M is a finite alternated
sequence of variable assignments and events s0, e1, s1, e2,… sn.

The set RM of runs of M is the smallest set of runs such that:

• i belongs to RM. It is the only empty run. It starts and ends in i.

• If i,… ,s is a run of RM ending by the state (variable assignment) s, then
for all transitions e: G A of T such that G(s) = true then

– i,… ,s, e, A(s)is a run of RM ending in the state A(s).

Note that there may be an infinite number of runs of M even though its
reachability graph is finite.

27

Norwegian University of Science and Technology

A Run of the Network

28

working
working
standby

askPrinter1 waiting
working
standby

working
printing
printing

printing
working
printing

startPrinting1
printChunk1

working
waiting
standby

printing
waiting
printing

working
working
standby

stopPrinting1

printChunk2

printChunk1

askPrinter2

startPrinting2

stopPrinting2

Norwegian University of Science and Technology

A Run of the Queue

29

0

0

0

0

0

2

0

2

5

0

0

5

0

5

6

5

6

7

0

6

7

upload[2] upload[5] download[2]

upload[6]

upload[7]download[5]

top=0 top=1 top=2

top=2top=2 top=3

top=1

Norwegian University of Science and Technology

LECTURE 7. PART 3.
TIMED DISCRETE EVENT SYSTEMS

30

Norwegian University of Science and Technology

Timed Transitions

To model accurately systems like the wafer production plant, we need to take
into account the time necessary to perform actions such as the treatment of a
batch. The idea is therefore to introduce timed transitions.

31

2 31 4

action1: d1 action2: d2 action3: d3

delays

t0 = 0 t1 = t0+d1 t2 = t1+d2 t3 = t2+d3

dates

Norwegian University of Science and Technology

Changes in Operational Semantics

The introduction of delays changes the operational semantics of discrete
event systems.

32

state=1

state=2

state=3

forth1: 10

forth2: 20

back1: 20

back2: 5

With the un-timed semantics, both
forth1 and forth2 can be fired when the
system in state 1.
With the timed semantics, the
transition forth2 will never be fired: the
firing of transition forth1 falsifies the
guard of the transition forth2, and
therefore makes it un-fireable.

state=1 state=2 state=1 state=2

forth1: 10 forth1: 10back1: 20

forth2: 20 forth2: 20

t0 = 0 t1 = 10 t2 = 30 t3 = 40

X X

Norwegian University of Science and Technology

Schedule

33

state=1

state=2

state=3

forth1: 10

forth2: 20

back1: 20

back2: 5

schedule in state=1 at t0 = 0:
• forth1, t0+10 = 10
• forth2, t0+20 = 20

The transition to be fired is the one
with the smallest date, here forth1

Schedule in state=2 at t1=10 (after
firing the transition forth1):
• forth1, t0+10 = 10
• forth2, t0+20 = 20
• back1, t1+20 = 30

Firing a transition consists in:
1) Performing the action of the transition.
2) Increase the current date by the delay of

the transition.
3) Remove from the schedule all transitions

that are not fireable anymore.
4) Add to the schedule all transitions that

became fireable.

A schedule is the list of fireable transitions in a given state and at a given date,
together with a firing dates for each of the transitions.

• forth1 and forth2 are
removed

• back1 is added

Norwegian University of Science and Technology

Timed Runs

Let M: V, E, T, i be a timed discrete event system. A timed run of M is a finite
alternated sequence (s0,, s0), (e1,,d1), (s1, s1), (e2,,d2),… (sn,, sn) where the si’s
are variable assignments, the si’s are schedules, the ei’s are events and the di’s
are delays.

The set RM of runs of M is the smallest set of runs such that:

• i, s0 belongs to RM. It is the only empty run. It starts and ends in i. s0 is the
schedule made of fireable transitions at t=0.

• If (i, s0),… , (sn,, sn) is a run of RM ending by the state (variable
assignment) s with the schedule s, and e: G A of T is a transition of delay
d and such that G(s) is true then (i, s0),…, (sn,, sn), (e,,d), (sn+1,, sn+1)is a
run of RM, if:

– sn+1 = A(sn)

– sn+1 is the schedule obtained by updating sn with the firing of e: G A

34

Norwegian University of Science and Technology

LECTURE 7. PART 4.
APPLICATION TO THE USE CASE

35

Norwegian University of Science and Technology

Events and Transitions of the Use Case

36

In the use case, there are 4 types of events:
• Load a batch into a buffer;
• Unload a batch from a buffer;
• Start task on a machine and a batch;
• End task on a machine and a batch.

We can assume that:
• Unloading a batch from a buffer is immediately followed by starting a task on

the corresponding machine. The two events can thus be merged into a single
event ”StartTask”.

• The end of a task on a batch is immediately followed by loading the batch
into the next buffer. The two events can thus be merged into a single event
“EndTask”. Loading a batch into the first buffer is a special event “LoadBatch”.

Norwegian University of Science and Technology

Assume we want to produce 5 batches of 10 wafers each (numbered from 1 to 5).

Assume moreover that we load the production chain with batches successively at dates
10, 20, 30, 40 and 50. The initial schedule is thus the following:

And the simulation starts:

Simulation (1)

37

task 1 2 3 4 5 6 7 8 9

duration (for one batch) 5 35 12 30 8 5 10 19 3

LoadBatch
1

LoadBatch
2

LoadBatch
3

LoadBatch
4

LoadBatch
5

2010 30 40 50

StartTask1
1

LoadBatch
2

LoadBatch
3

LoadBatch
4

LoadBatch
5

2010 30 40 50

step 1

step 2

Norwegian University of Science and Technology

Simulation (2)

38

StartTask 1
1

LoadBatch
2

LoadBatch
3

LoadBatch
4

LoadBatch
5

2010 30 40 50

EndTask 1
1

LoadBatch
2

LoadBatch
3

LoadBatch
4

LoadBatch
5

2015 30 40 50

LoadBatch
2

LoadBatch
3

LoadBatch
4

LoadBatch
5

EndTask 2
1

3020 40 50

StartTask 2
1

LoadBatch
2

LoadBatch
3

LoadBatch
4

LoadBatch
5

2015 30 40 50

And so on….

step 2

step 3

step 4

step 5

Norwegian University of Science and Technology

Production Optimization

We can use the discrete event simulation as the base brick for production
optimization.

Given a number of wafers to be produced, we can try to find the best
combination of:

• Policies of the machines (which task has the priority in which situation);

• Number and size of batches;

• Dates of introduction of batches into the production chain.

The best combination is the one that makes it possible to complete the
production within the shortest time.

The search for the optimal combination can be done manually “try and test”
approach or by means of some optimization algorithm.

In any case, the state space to be look at is so huge that no exhaustive search
is possible. Moreover, this use case shows high irregularities and non-
linearity.

39

Norwegian University of Science and Technology

LECTURE 7. PART 5.
WRAP-UP & ASSIGNMENT

40

Norwegian University of Science and Technology

Wrap-Up

• Discrete Event Simulation is one of the base tool of complex systems
engineering. It makes it possible to study the behavior of these systems
even when no “analytical” tool is available.

• Discrete event simulation relies on the notion of timed automaton. Many
different types of automata may be used as a support formalism, but the
basic principles are those provided in this lecture.

41

Norwegian University of Science and Technology

Assignment

The objective of this assignment is:

1. To learn about workshop scheduling problems;

2. To get more familiar with discrete event simulator;

3. To use Python.

You shall modify the program “myjobshop.py” and make some experiments
with.

Question 1: Look at the program. Try to understand it. Run it. Comment.

Question 2: What is the sequence of events to produce 2 batches of 50
wafers. Same question with 3 batches.

Question 3: What is the best strategy to produce 1000 wafers. What are the
occupation rates of the machines?

Question 4: The method “SelectBatchAndTaskToStart” of the class
“WorkStation” defines a strategy to choose the next task to perform. Is there
a better strategy?

42

Norwegian University of Science and Technology

Recommend Readings

Recommended books on discrete event systems:

Christos G. Cassandras and Stéphane Lafortune. Introduction to Discrete Event Systems. Springer US, 2008.
978-0-387-33332-8

43

Norwegian University of Science and Technology

Henri Marie Léonce Fabre (1882 -1984)
is a French engineer and pilot. He
invented the seaplane in 1910.
He graduated from Supélec.

Louis Charles Joseph Blériot (1872 -1936)
is an airplane designer and one of the
pioneer pilot of French aviation. He has
been the first to cross the channel on July
the 25th onboard of the Blériot XI.
He graduated from Ecole Centrale de Paris

44

